Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Cancer ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720427

RESUMO

Brainstem metastases (BSM) present a significant neuro-oncological challenge, resulting in profound neurological deficits and poor survival outcomes. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) offer promising therapeutic avenues for BSM despite their precarious location. This international multicenter study investigates the efficacy and safety of SRS and FSRT in 136 patients with 144 BSM treated at nine institutions from 2005 to 2022. The median radiographic and clinical follow-up periods were 6.8 and 9.4 months, respectively. Predominantly, patients with BSM were managed with SRS (69.4%). The median prescription dose and isodose line for SRS were 18 Gy and 65%, respectively, while for FSRT, the median prescription dose was 21 Gy with a median isodose line of 70%. The 12-, 24-, and 36-month local control (LC) rates were 82.9%, 71.4%, and 61.2%, respectively. Corresponding overall survival rates at these time points were 61.1%, 34.7%, and 19.3%. In the multivariable Cox regression analysis for LC, only the minimum biologically effective dose was significantly associated with LC, favoring higher doses for improved control (in Gy, hazard ratio [HR]: 0.86, p < .01). Regarding overall survival, good performance status (Karnofsky performance status, ≥90%; HR: 0.43, p < .01) and prior whole brain radiotherapy (HR: 2.52, p < .01) emerged as associated factors. In 14 BSM (9.7%), treatment-related adverse events were noted, with a total of five (3.4%) radiation necrosis. SRS and FSRT for BSM exhibit efficacy and safety, making them suitable treatment options for affected patients.

2.
Neurooncol Adv ; 6(1): vdad151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196739

RESUMO

Background: In glioma patients, tumor growth and subsequent treatments are associated with various types of brain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintained structural connectivity of multiple brain networks. Methods: The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative Oncology Group performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was assessed by 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid amino acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced tractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were applied to a cross-validated machine-learning model to identify predictive fiber connections (edges), critical cortical regions (nodes), and the networks underlying cognitive performance. Results: Compared to healthy controls (n = 121), patients' cognitive scores were significantly lower in 9 cognitive tests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39-0.57) from 0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Critically involved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default mode network's left temporal and bilateral posterior cingulate cortex. Conclusions: These results suggest that the cognitive performance of pretreated glioma patients is strongly related to structural connectivity between multiple brain networks and depends on the integrity of known network hubs also involved in other neurological disorders.

3.
Strahlenther Onkol ; 200(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163834

RESUMO

Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Humanos , Radiocirurgia/métodos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Imageamento Tridimensional
4.
Blood ; 143(6): 522-534, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946299

RESUMO

ABSTRACT: State-of-the-art response assessment of central nervous system lymphoma (CNSL) by magnetic resonance imaging is challenging and an insufficient predictor of treatment outcomes. Accordingly, the development of novel risk stratification strategies in CNSL is a high unmet medical need. We applied ultrasensitive circulating tumor DNA (ctDNA) sequencing to 146 plasma and cerebrospinal fluid (CSF) samples from 67 patients, aiming to develop an entirely noninvasive dynamic risk model considering clinical and molecular features of CNSL. Our ultrasensitive method allowed for the detection of CNSL-derived mutations in plasma ctDNA with high concordance to CSF and tumor tissue. Undetectable plasma ctDNA at baseline was associated with favorable outcomes. We tracked tumor-specific mutations in plasma-derived ctDNA over time and developed a novel CNSL biomarker based on this information: peripheral residual disease (PRD). Persistence of PRD after treatment was highly predictive of relapse. Integrating established baseline clinical risk factors with assessment of radiographic response and PRD during treatment resulted in the development and independent validation of a novel tool for risk stratification: molecular prognostic index for CNSL (MOP-C). MOP-C proved to be highly predictive of outcomes in patients with CNSL (failure-free survival hazard ratio per risk group of 6.60; 95% confidence interval, 3.12-13.97; P < .0001) and is publicly available at www.mop-c.com. Our results highlight the role of ctDNA sequencing in CNSL. MOP-C has the potential to improve the current standard of clinical risk stratification and radiographic response assessment in patients with CNSL, ultimately paving the way toward individualized treatment.


Assuntos
Neoplasias do Sistema Nervoso Central , DNA Tumoral Circulante , Linfoma não Hodgkin , Humanos , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Prognóstico , Biomarcadores Tumorais/genética , Sistema Nervoso Central
5.
J Neurooncol ; 163(3): 597-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37382806

RESUMO

BACKGROUND: The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC. PATIENTS AND METHODS: Fifty-three NSCLC patients with brain metastases from two academic neuro-oncological centers (group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evaluation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiomics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses. RESULTS: An intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients (50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), and an AUC of 0.84 in the external test data (group 2). CONCLUSION: The developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression in patients with brain metastases secondary to NSCLC with high accuracy.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Curva ROC
6.
Cancers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900290

RESUMO

(1) Background: Transient increase in volume of vestibular schwannomas (VS) after stereotactic radiosurgery (SRS) is common and complicates differentiation between treatment-related changes (pseudoprogression, PP) and tumor recurrence (progressive disease, PD). (2) Methods: Patients with unilateral VS (n = 63) underwent single fraction robotic-guided SRS. Volume changes were classified according to existing RANO criteria. A new response type, PP, with a >20% transient increase in volume was defined and divided into early (within the first 12 months) and late (>12 months) occurrence. (3) Results: The median age was 56 (range: 20-82) years, the median initial tumor volume was 1.5 (range: 0.1-8.6) cm3. The median radiological and clinical follow-up time was 66 (range: 24-103) months. Partial response was observed in 36% (n = 23), stable disease in 35% (n = 22) and PP in 29% (n = 18) of patients. The latter occurred early (16%, n = 10) or late (13%, n = 8). Using these criteria, no case of PD was observed. (4) Conclusion: Any volume increase after SRS for vs. assumed to be PD turned out to be early or late PP. Therefore, we propose modifying RANO criteria for SRS of VS, which may affect the management of vs. during follow-up in favor of further observation.

8.
J Neurooncol ; 161(3): 643-654, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36750534

RESUMO

PURPOSE: In glioma patients, tumor development and multimodality therapy are associated with changes in health-related quality of life (HRQoL). It is largely unknown how different types and locations of tumor- and treatment-related brain lesions, as well as their relationship to white matter tracts and functional brain networks, affect HRQoL. METHODS: In 121 patients with pretreated gliomas of WHO CNS grades 3 or 4, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET, resting-state functional MRI (rs-fMRI) and self-reported HRQoL questionnaires (EORTC QLQ-C30/BN20) were obtained. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and lesions with pathologically increased FET uptake were delineated. Effects of tumor lateralization, involvement of white matter tracts or resting-state network nodes by different types of lesions and within-network rs-fMRI connectivity were analyzed in terms of their interaction with HRQoL scores. RESULTS: Right hemisphere gliomas were associated with significantly less favorable outcomes in physical, role, emotional and social functioning, compared with left-sided tumors. Most functional HRQoL scores correlated significantly with right-sided white-matter tracts involvement by T2/FLAIR hyperintensities and with loss of within-network functional connectivity of right-sided nodes. Tumors of the left hemisphere caused significantly more communication deficits. CONCLUSION: In pretreated high-grade gliomas, right hemisphere lesions are associated with reduced HRQoL scores in most functional domains except communication ability, compared to tumors of the left hemisphere. These relationships are mainly observed for T2/FLAIR lesions involving structural and functional networks in the right hemisphere. The data suggest that sparing the right hemisphere from treatment-related tissue damage may improve HRQoL in glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética , Qualidade de Vida , Tomografia por Emissão de Pósitrons , Glioma/patologia , Encéfalo/patologia , Organização Mundial da Saúde
9.
Neuro Oncol ; 25(5): 940-954, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35961053

RESUMO

BACKGROUND: Terminology to describe extent of resection in glioblastoma is inconsistent across clinical trials. A surgical classification system was previously proposed based upon residual contrast-enhancing (CE) tumor. We aimed to (1) explore the prognostic utility of the classification system and (2) define how much removed non-CE tumor translates into a survival benefit. METHODS: The international RANO resect group retrospectively searched previously compiled databases from 7 neuro-oncological centers in the USA and Europe for patients with newly diagnosed glioblastoma per WHO 2021 classification. Clinical and volumetric information from pre- and postoperative MRI were collected. RESULTS: We collected 1,008 patients with newly diagnosed IDHwt glioblastoma. 744 IDHwt glioblastomas were treated with radiochemotherapy per EORTC-26981/22981 (TMZ/RT→TMZ) following surgery. Among these homogenously treated patients, lower absolute residual tumor volumes (in cm3) were favorably associated with outcome: patients with "maximal CE resection" (class 2) had superior outcome compared to patients with "submaximal CE resection" (class 3) or "biopsy" (class 4). Extensive resection of non-CE tumor (≤5 cm3 residual non-CE tumor) was associated with better survival among patients with complete CE resection, thus defining class 1 ("supramaximal CE resection"). The prognostic value of the resection classes was retained on multivariate analysis when adjusting for molecular and clinical markers. CONCLUSIONS: The proposed "RANO categories for extent of resection in glioblastoma" are highly prognostic and may serve for stratification within clinical trials. Removal of non-CE tumor beyond the CE tumor borders may translate into additional survival benefit, providing a rationale to explicitly denominate such "supramaximal CE resection."


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Prognóstico , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Procedimentos Neurocirúrgicos , Resultado do Tratamento
10.
Front Oncol ; 12: 998069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452509

RESUMO

Background: In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. Patients and methods: This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. Results: Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. Conclusions: These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.

12.
Front Oncol ; 12: 1017339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313670

RESUMO

Currently, contrast-enhanced MRI is the method of choice for treatment planning and follow-up in patients with meningioma. However, positron emission tomography (PET) imaging of somatostatin receptor subtype 2 (SSTR2) expression using 68Ga-DOTATATE may provide a higher sensitivity for meningioma detection, especially in cases with complex anatomy or in the recurrent setting. Here, we report on a patient with a multilocal recurrent atypical meningioma, in which 68Ga-DOTATATE PET was considerably helpful for treatment guidance and decision-making.

13.
Front Hum Neurosci ; 16: 958247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092644

RESUMO

Self-injurious behavior (SIB) is associated with diverse psychiatric conditions. Sometimes (e.g., in patients with autism spectrum disorder or acquired brain injuries), SIB is the most dominant symptom, severely restricting the psychosocial functioning and quality of life of the patients and inhibiting appropriate patient care. In severe cases, it can lead to permanent physical injuries or even death. Primary therapy consists of medical treatment and if implementable, behavioral therapy. For patients with severe SIB refractory to conventional therapy, neuromodulation can be considered as a last recourse. In scientific literature, several successful lesioning and deep brain stimulation targets have been described that can indicate a common underlying neuronal pathway. The objectives of this study were to evaluate the short- and long-term clinical outcome of patients with severe, therapy refractory SIB who underwent DBS with diverse underlying psychiatric disorders and to correlate these outcomes with the activated connectivity networks. We retrospectively analyzed 10 patients with SIB who underwent DBS surgery with diverse psychiatric conditions including autism spectrum disorder, organic personality disorder after hypoxic or traumatic brain injury or Tourette syndrome. DBS targets were chosen according to the underlying disorder, patients were either stimulated in the nucleus accumbens, amygdala, posterior hypothalamus, medial thalamus or ventrolateral thalamus. Clinical outcome was measured 6 months after surgery and at long-term follow-up after 10 or more years using the Early Rehabilitation Barthel index (ERBI) and time of restraint. Connectivity patterns were analyzed using normative connectome. Based on previous literature the orbitofrontal cortex, superior frontal gyrus, the anterior cingulate cortex, the amygdala and the hippocampus were chosen as regions of interest. This analysis showed a significant improvement in the functionality of the patients with DBS in the short- and long-term follow-up. Good clinical outcome correlated with higher connectivity to the amygdala and hippocampus. These findings may suggest a common pathway, which can be relevant when planning a surgical procedure in patients with SIB.

14.
Acta Neuropathol Commun ; 10(1): 109, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933416

RESUMO

Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (κ = 0.671). An excellent internal consistency was found among the random areas with 90.2% (Cα = 0.942) accuracy. In conclusion, the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a promising way for an alternative rapid intraoperative histopathological decision-making tool.


Assuntos
Neoplasias Encefálicas , Microscopia Óptica não Linear , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Progressão da Doença , Humanos , Redes Neurais de Computação , Procedimentos Neurocirúrgicos , Estudos Prospectivos , Compostos Radiofarmacêuticos
15.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884396

RESUMO

O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.

16.
Neuro Oncol ; 24(8): 1331-1340, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935978

RESUMO

BACKGROUND: The BRAF V600E mutation is present in approximately 50% of patients with melanoma brain metastases and an important prerequisite for response to targeted therapies, particularly BRAF inhibitors. As heterogeneity in terms of BRAF mutation status may occur in melanoma patients, a wild-type extracranial primary tumor does not necessarily rule out a targetable mutation in brain metastases using BRAF inhibitors. We evaluated the potential of MRI radiomics for a noninvasive prediction of the intracranial BRAF mutation status. METHODS: Fifty-nine patients with melanoma brain metastases from two university brain tumor centers (group 1, 45 patients; group 2, 14 patients) underwent tumor resection with subsequent genetic analysis of the intracranial BRAF mutation status. Preoperative contrast-enhanced MRI was manually segmented and analyzed. Group 1 was used for model training and validation, group 2 for model testing. After radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. Finally, the best performing radiomics model was applied to the test data. Diagnostic performances were evaluated using receiver operating characteristic (ROC) analyses. RESULTS: Twenty-two of 45 patients (49%) in group 1, and 8 of 14 patients (57%) in group 2 had an intracranial BRAF V600E mutation. A linear support vector machine classifier using a six-parameter radiomics signature yielded an area under the ROC curve of 0.92 (sensitivity, 83%; specificity, 88%) in the test data. CONCLUSIONS: The developed radiomics classifier allows a noninvasive prediction of the intracranial BRAF V600E mutation status in patients with melanoma brain metastases with high diagnostic performance.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Humanos , Imageamento por Ressonância Magnética , Melanoma/genética , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos
17.
J Neurosurg ; : 1-8, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767526

RESUMO

OBJECTIVE: The treatment of symptomatic, progressive or recurrent acquired intracerebral cysts is challenging, especially when they are localized in eloquent structures. In addition to resection, endoscopic fenestration, or stereotactic puncture, the implantation of a cystoventricular shunt by stereotactic guidance (SCVS) has been reported as a minimally invasive procedure; however, only scarce data are available regarding its feasibility and efficacy. Here, the authors evaluated the feasibility and efficacy of frame-based SCVS in patients with acquired intracranial cysts. METHODS: In this single-center retrospective analysis, the authors included all patients with acquired intracerebral cysts treated by SCVS following a standardized prospective protocol between 2012 and 2020. They analyzed clinical symptoms, complications, and radiological outcome with regard to cyst volume reduction by 3D volumetry. RESULTS: Thirty-four patients (17 females and 17 males; median age 44 years, range 5-77 years) were identified. The median initial cyst volume was 11.5 cm3 (range 1.6-71.6 cm3), and the mean follow-up was 20 months (range 1-82 months). At the last follow-up, 27 of 34 patients (79%) showed a cyst volume reduction of more than 50%. Initial symptoms improved or resolved in 74% (n = 25) and remained stable in 24% (n = 8). No permanent clinical deterioration after treatment was observed. The total complication rate was 5.9%, comprising transient neurological deterioration (n = 1) and ventriculitis (n = 1). There were no deaths. The overall recurrence rate was 11.8%. CONCLUSIONS: In this study, SCVS proved to be a safe, minimally invasive, and effective treatment with reliable long-term volume reduction, resulting in clinical improvement and a minor complication rate.

18.
Front Neurosci ; 15: 738708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776847

RESUMO

Introduction: Long-term survivors of whole brain radiation (WBRT) are at significant risk for developing cognitive deficits, but knowledge about the underlying pathophysiological mechanisms is limited. Therefore, we here report a rare case with a singular brain metastasis treated by resection and WBRT that survived for more than 10 years where we investigated the integrity of brain networks using resting-state functional MRI. Methods: A female patient with a left frontal non-small cell lung cancer (NSCLC) brain metastasis had resection and postoperative WBRT (30.0 in 3.0 Gy fractions) and stayed free from brain metastasis recurrence for a follow-up period of 11 years. Structural magnetic resonance imaging (MRI) and amino acid [O-(2-[18F]fluoroethyl)-L-tyrosine] positron emission tomography (FET PET) were repeatedly acquired. At the last follow up, neurocognitive functions and resting-state functional connectivity (RSFC) using resting-state fMRI were assessed. Within-network and inter-network connectivity of seven resting-state networks were computed from a connectivity matrix. All measures were compared to a matched group of 10 female healthy subjects. Results: At the 11-year follow-up, T2/FLAIR MR images of the patient showed extended regions of hyper-intensities covering mainly the white mater of the bilateral dorsal frontal and parietal lobes while sparing most of the temporal lobes. Compared to the healthy subjects, the patient performed significantly worse in all cognitive domains that included executive functions, attention and processing speed, while verbal working memory, verbal episodic memory, and visual working memory were left mostly unaffected. The connectivity matrix showed a heavily disturbed pattern with a widely distributed, scattered loss of RSFC. The within-network RSFC revealed a significant loss of connectivity within all seven networks where the dorsal attention and fronto-parietal control networks were affected most severely. The inter-network RSFC was significantly reduced for the visual, somato-motor, and dorsal and ventral attention networks. Conclusion: As demonstrated here in a patient with a metastatic NSCLC and long-term survival, WBRT may lead to extended white matter damage and cause severe disruption of the RSFC in multiple resting state networks. In consequence, executive functioning which is assumed to depend on the interaction of several networks may be severely impaired following WBRT apart from the well-recognized deficits in memory function.

19.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069074

RESUMO

Cognitive deficits are common in glioma patients following multimodality therapy, but the relative impact of different types and locations of treatment-related brain damage and recurrent tumors on cognition is not well understood. In 121 WHO Grade III/IV glioma patients, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine FET-PET, and neuropsychological testing were performed at a median interval of 14 months (range, 1-214 months) after therapy initiation. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and FET-PET positive tumor sites were semi-automatically segmented and elastically registered to a normative, resting state (RS) fMRI-based functional cortical network atlas and to the JHU atlas of white matter (WM) tracts, and their influence on cognitive test scores relative to a cohort of matched healthy subjects was assessed. T2/FLAIR hyperintensities presumably caused by radiation therapy covered more extensive brain areas than the other lesion types and significantly impaired cognitive performance in many domains when affecting left-hemispheric RS-nodes and WM-tracts as opposed to brain tissue damage caused by resection or recurrent tumors. Verbal episodic memory proved to be especially vulnerable to T2/FLAIR abnormalities affecting the nodes and tracts of the left temporal lobe. In order to improve radiotherapy planning, publicly available brain atlases, in conjunction with elastic registration techniques, should be used, similar to neuronavigation in neurosurgery.

20.
Radiat Oncol ; 16(1): 74, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863358

RESUMO

OBJECTIVES: To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT). METHODS: Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort). RESULTS: Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features (concordance index 0.66, p < 0.03). CONCLUSION: Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Lesão Pulmonar/etiologia , Neoplasias Pulmonares/radioterapia , Lesões por Radiação/etiologia , Radiometria/métodos , Radiocirurgia/métodos , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Fracionamento da Dose de Radiação , Feminino , Humanos , Estimativa de Kaplan-Meier , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/etiologia , Estudos Retrospectivos , Robótica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA